(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rev(a) → a
rev(b) → b
rev(++(x, y)) → ++(rev(y), rev(x))
rev(++(x, x)) → rev(x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
rev(++(x, y)) →+ ++(rev(y), rev(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / ++(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rev(a) → a
rev(b) → b
rev(++(x, y)) → ++(rev(y), rev(x))
rev(++(x, x)) → rev(x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
rev(a) → a
rev(b) → b
rev(++(x, y)) → ++(rev(y), rev(x))
rev(++(x, x)) → rev(x)
Types:
rev :: a:b:++ → a:b:++
a :: a:b:++
b :: a:b:++
++ :: a:b:++ → a:b:++ → a:b:++
hole_a:b:++1_0 :: a:b:++
gen_a:b:++2_0 :: Nat → a:b:++
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
rev
(8) Obligation:
TRS:
Rules:
rev(
a) →
arev(
b) →
brev(
++(
x,
y)) →
++(
rev(
y),
rev(
x))
rev(
++(
x,
x)) →
rev(
x)
Types:
rev :: a:b:++ → a:b:++
a :: a:b:++
b :: a:b:++
++ :: a:b:++ → a:b:++ → a:b:++
hole_a:b:++1_0 :: a:b:++
gen_a:b:++2_0 :: Nat → a:b:++
Generator Equations:
gen_a:b:++2_0(0) ⇔ a
gen_a:b:++2_0(+(x, 1)) ⇔ ++(a, gen_a:b:++2_0(x))
The following defined symbols remain to be analysed:
rev
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
rev(
gen_a:b:++2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
rev(gen_a:b:++2_0(+(1, 0)))
Induction Step:
rev(gen_a:b:++2_0(+(1, +(n4_0, 1)))) →RΩ(1)
++(rev(gen_a:b:++2_0(+(1, n4_0))), rev(a)) →IH
++(*3_0, rev(a)) →RΩ(1)
++(*3_0, a)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
rev(
a) →
arev(
b) →
brev(
++(
x,
y)) →
++(
rev(
y),
rev(
x))
rev(
++(
x,
x)) →
rev(
x)
Types:
rev :: a:b:++ → a:b:++
a :: a:b:++
b :: a:b:++
++ :: a:b:++ → a:b:++ → a:b:++
hole_a:b:++1_0 :: a:b:++
gen_a:b:++2_0 :: Nat → a:b:++
Lemmas:
rev(gen_a:b:++2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_a:b:++2_0(0) ⇔ a
gen_a:b:++2_0(+(x, 1)) ⇔ ++(a, gen_a:b:++2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
rev(gen_a:b:++2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
rev(
a) →
arev(
b) →
brev(
++(
x,
y)) →
++(
rev(
y),
rev(
x))
rev(
++(
x,
x)) →
rev(
x)
Types:
rev :: a:b:++ → a:b:++
a :: a:b:++
b :: a:b:++
++ :: a:b:++ → a:b:++ → a:b:++
hole_a:b:++1_0 :: a:b:++
gen_a:b:++2_0 :: Nat → a:b:++
Lemmas:
rev(gen_a:b:++2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_a:b:++2_0(0) ⇔ a
gen_a:b:++2_0(+(x, 1)) ⇔ ++(a, gen_a:b:++2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
rev(gen_a:b:++2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)